Received: July 7, 1982

PRELIMINARY NOTE

SYNTHESIS AND CHARACTERIZATION OF MONO- AND BIS(PENTAFLUOROSULFUR)DIACETYLENE

T. A. KOVACINA,* R. A. DE MARCO, and A. W. SNOW

Chemistry Division, Naval Research Laboratory, Washington, DC 20375 (U.S.A.)

SUMMARY

The synthesis of novel, high density, diacetylene monomers has been achieved by the preparation of mono- and bis(pentafluorosulfur) diacetylene. The derivatives are readily prepared by the addition of pentafluorosulfur bromide (SF₅Br) to diacetylene (C_4H_2) and subsequent dehydrobromination. Details of the synthesis and properties of these compounds are discussed.

Direct methods to prepare mono- or disubstituted derivatives of diacetylene have not been available. Previously, only the syntheses of symmetrical derivatives of diacetylene were reported by the indirect, multi-stepped route involving coupling reactions of the appropriate acetylenic fragments. Furthermore, very few fluorinated diacetylene derivatives^[1,2] have been synthesized by this method. As a part of our continued interest in modifying the properties of materials by directly incorporating perfluorosulfur groups (SF₅) into olefins^[3] and acetylenes^[4] using pentafluorosulfur bromide (SF₅Br), we recently developed a method to prepare the unsymmetrical mono-substituted and symmetrical disubstituted derivatives of diacetylene. This report describes the syntheses and some physical properties of both mono-(pentafluorosulfur)diacetylene, SF₅C=C-C=CH, and bis(pentafluorosulfur)diacetylene, SF₅C=C-C=CH, and bis(pentafluorosulfur)diacetylene, SF₅C=C-C=C=CH, and bis(S=C=C=C=C=C)

0022-1139/82/0000-0000/\$02.75

© Elsevier Sequoia/Printed in The Netherlands

Millimole quantities of SF_5Br and diacetylene, HC=C-C=CH, were reacted overnight at -78° in a one liter round bottom flask, fitted with a Teflon/ Pyrex stopcock and a condensation tip, giving a 50% yield of the 1:1 addition product $F_{r}SC(H)=C(Br)-C=CH$ (I). This compound was a clear liquid with a vapor pressure of less than 5 torr at room temperature. Compound (I) was isolated by vacuum distillation through a 0° trap into a collection trap cooled to -23⁰. The gas phase infrared spectrum contained principal absorptions at 3325 cm⁻¹ (m) (ν (HC=C)), 3110 cm⁻¹ (w) (ν (HC=C)), 2120 cm⁻¹(w) (v(C=C)), 1620 cm⁻¹ (w) with a shoulder at 1590 cm⁻¹ (v(C=C)), 880 cm⁻¹ (vs) (v(S-F)), and 603 cm⁻¹ (m) ($\delta(S-F)$). Other absorptions at 1295 cm⁻¹ (w), 1008 cm⁻¹ (m), 920 cm⁻¹ (m), 720 cm⁻¹ (w) and 657 cm⁻¹ (m) were unassigned. The ¹⁹F NMR spectrum^[5] in Freon-11 contained only one AB₄ pattern (δ_A =-61.0 and δ_{B} =-71.5 ppm, J_{A-B} = 141.1 Hz), which is consistent with an SF₅ group. The ${}^{16}_{H}$ NMR spectrum contained a quintet (δ =7.45 ppm, J_{H-R}=7.8 Hz) due to a pr coupling with the equatorial sulfur-fluorines and a singlet in the spectral region of acetylene hydrogens (δ =3.88 ppm) in a ratio of 1:1.07. The mass spectrum contained the appropriate Br clusters and the fragmentation pattern (reported for $^{79}\mathrm{Br}$) contained a parent-ion at m/e 256, in addition to major fragments at 147 (SC_3Br^+), 128 (C_4HBr^+), 127 (SF_5^+), 89 (SF_2^+) and 70 (SF_2^+) .

Dehydrobromination of (I) by excess KOH occurred at 25° C to give an approximate 50% yield of the mono(pentafluorosulfur)diacetylene, $SF_5C=C-C=CH$ (II). The identity of the compound was confirmed by gas phase molecular weight measurements (found, 174; theory, 176) and spectroscopic data. In the gas phase infrared spectrum, a medium absorption at 3340 \mbox{cm}^{-1} (v(HC)), a medium absorption at 2260 cm⁻¹ (v(SF₅C=C)), a weak absorption at 2080 cm⁻¹ (v(HC=C)), variable intensity absorptions at 1350, 1140, 1100 and 990 cm⁻¹ were unassigned, while very strong S-F bands were at 900, 850, 650, 620 and 590 cm⁻¹. The 19 F NMR spectrum⁵ in Freon-11 contained only one AB₄ pattern (δ_A =-70.0 and δ_B =-78.1 ppm; J_{A-B}=141.5 Hz). The ¹H NMR spectrum contained a singlet absorption at δ =2.45 ppm relative to TMS, which is within the range (2-3 ppm) characteristic of protons bonded to acetylenic structures. A relatively simple mass spectral fragmentation pattern contained a strong parent ion at m/e= 176, together with major fragments at 157 ($SF_4C_4H^+$), 127 (SF_5^+) , 89 (SF_3^+) , 68 (SC_3^+) and 49 (C_4H^+) . The experimentally determined vapor pressure equation, log P_(mm) = 7.70 - (1593/T), yielded an extrapolated boiling point of 57.6⁰, ΔH_{vap} of 7.28 kcal/mol, and ΔS_{vap} of 22.0 eu. The density of the liquid at 25[°]C was found to be 1.42 g/cc.

The disubstituted adduct $F_5SC(H)=C(Br)-C(Br)=C(H)SF_5$ (III) was prepared in a 50% yield by reacting a 2:1 mole ratio of SF_5Br and HC=C-C=CH, respectively, at -45° . This compound was a clear liquid with a vapor pressure of much less than 1 Torr at 25° and was removed from the reaction vessel with a syringe after pumping away the volatile fractions. Attempts to further purify this material by gas chromatography and fractional distillation under vacuum were unsuccessful due to a thermally induced reaction. The ¹H NMR spectrum contained only one quintet pattern indicating each proton was coupled to a separate SF_{F} - group and equivalent. The $^{19}\mathrm{F}$ NMR spectrum contained only one AB_{Δ} pattern indicative of equivalent SF_5 groups. Based on the NMR spectra, the purity of (III) was estimated to be better than 95%. The structure assignment was supported by the liquid phase infrared spectrum which contained an olefinic C-H stretch, $(3105 \text{ cm}^{-1}(\text{m}))$, a C=C stretch, (1668 cm⁻¹(w)), S-F stretches (930 and 840 cm⁻¹ (vs)) and an S-F deformation $(600 \text{ cm}^{-1} \text{ (s)})$. Other infrared absorptions at 1590 (w), 1320 (w), 1280 (w), 1068 (w), 1017 (m), 720 (m), 645 (m) and 578 cm^{-1} (m) were unassigned. The ¹H NMR spectrum contained a regular quintet (δ =6.85 ppm, J_{H-R}=7.5 Hz) and the ¹⁹I NMR spectrum^[5] contained an AB₄ pattern (δ_A =-62.2; δ_B =-70.0 ppm; J_{A-B}=135.4 Hz). The mass spectral fragmentation pattern (reported for ⁷⁹Br) contained clusters for 1 or 2 bromines as indicated, and a parent-ion at m/e=462, together with the following fragments; m/e=443 ($S_2 F_9 C_4 H_2 Br_2^+$), 382 ($S_2 F_{10} C_4 H$ Br⁺), 335 (SF₅ C₄ H₂ Br₂⁺), 226 (SC₃ Br₂⁺), 208 (C₄ H₂ Br₂⁺), 186 (SF₂ C₃ H Br⁺), 166 (SFC₃Br⁺), 158 (Br₂⁺), 147 (SC₃ Br⁺), 128 (C₄ H Br⁺), 127 (SF₅⁺), 89 (SF_3^+) , 70 (SF_2^+) .

Dehydrobromination of (III) by excess KOH proceeded readily at 25° C resulting in a yield of approximately 50% for the bis(pentafluorosulfur)diacetylene, SF₅CEC-CECSF₅ (IV). Identification of the clear, liquid compound was corroborated by gas phase molecular weight measurements (found, 298; theory, 302) and spectroscopic data. The gas phase infrared spectrum has a medium absorption at 2180 cm⁻¹ (v(CEC)) and very strong S-F bands at 920, 890, 620 and 600 cm⁻¹. The ¹⁹F NMR spectrum^{5]} in Freon-11 contained only one AB₄ pattern (δ_A =-66.4 and δ_B =-77.0 ppm; J_{A-B}=169.2 H₂) which was consistent with equivalent SF₅ groups. The mass spectral fragmentation pattern contained a strong parent ion at m/e=302, together with major fragments at m/e=283 (S₂ F₉ C₄⁺), 175 (SF₅ C₄⁺), 137 (SF₃C₄⁺), 127 (SF₅⁺), 118 (SF₂ C₄⁺), 89 (SF₃⁺), 86 (F₂C₄⁺), 80 (SC₄⁺), 70 (SF₂⁺), 67 (FC₄⁺), 44 (SC⁺) and 31 (CF⁺). The experimentally determined vapor pressure equation, log P_(mm) =7.80-(1860/T), yielded an extrapolated boiling point of 105^o, ΔH_{vap}

of 8.51 kcal/mol, and ΔS_{vap} of 22.5 eu. The density of the liquid was measured as 1.72 g/cc at 25° compared to 0.7364 g/cc $(0^{\circ})^{[6]}$ for diacetylene which again demonstrates the ability of SF₅ group substitution to greatly enhance the density of molecules.

Both SF₅C=C-C=CH and SF₅C=C-C=CSF₅ are relatively stable liquids at 25° with vapor pressures of approximately 220 and 36 mm respectively. However, on standing at 25° under fluorescent lighting both compounds gradually change from clear, colorless liquids to clear, amber colored liquids. The IR spectra of the head-gases above the amber liquids were identical to the original products and, after vacuum transferring the compounds, the colorless appearances returned leaving trace amounts of non-volatile, amber residues in the original traps. Initial experiments indicate that bis(penta-fluorosulfur)diacetylene forms low molecular weight polymers when heated. We are continuing to investigate the polymerization reactions and to characterize these polymers.

REFERENCES AND NOTES

- 1 Norris, W. P.; Finnegan, W. G. J. Org. Chem. 1966, 31, 3292.
- 2 Bruce, M. I.; Cullen, W. R. Fluorine Chemistry Reviews 1969, 4, 79.
- 3 Berry, A. D.; Fox, W. B. J. Fluorine Chem. 1976, 7, 449.
- 4 Berry, A. D.; De Marco, R. A.; Fox, W. B. J. Amer. Chem. Soc. 1979, 101, 737.
- 5 Chemical shift values are given for the most intense lines of the A and B portions of the AB_4 spectra and J_{AB} values are estimated from the basic doublet pattern of the B portion.
- 6 Straus, F.; Kollek, L. <u>Ber.</u> 1926, <u>59B</u>, 1664.